Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.483
Filtrar
1.
Anesthesiology ; 140(6): 1134-1152, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498811

RESUMO

BACKGROUND: Dexmedetomidine has repeatedly shown to improve anxiety, but the precise neural mechanisms underlying this effect remain incompletely understood. This study aims to explore the role of corticotropin-releasing hormone-producing hypothalamic paraventricular nucleus (CRHPVN) neurons in mediating the anxiolytic effects of dexmedetomidine. METHODS: A social defeat stress mouse model was used to evaluate the anxiolytic effects induced by dexmedetomidine through the elevated plus maze, open-field test, and measurement of serum stress hormone levels. In vivo Ca2+ signal fiber photometry and ex vivo patch-clamp recordings were used to determine the excitability of CRHPVN neurons and investigate the specific mechanism involved. CRHPVN neuron modulation was achieved through chemogenetic activation or inhibition. RESULTS: Compared with saline, dexmedetomidine (40 µg/kg) alleviated anxiety-like behaviors. Additionally, dexmedetomidine reduced CRHPVN neuronal excitability. Chemogenetic activation of CRHPVN neurons decreased the time spent in the open arms of the elevated plus maze and in the central area of the open-field test. Conversely, chemogenetic inhibition of CRHPVN neurons had the opposite effect. Moreover, the suppressive impact of dexmedetomidine on CRHPVN neurons was attenuated by the α2-receptor antagonist yohimbine. CONCLUSIONS: The results indicate that the anxiety-like effects of dexmedetomidine are mediated via α2-adrenergic receptor-triggered inhibition of CRHPVN neuronal excitability in the hypothalamus.


Assuntos
Ansiedade , Hormônio Liberador da Corticotropina , Dexmedetomidina , Neurônios , Núcleo Hipotalâmico Paraventricular , Estresse Psicológico , Animais , Dexmedetomidina/farmacologia , Camundongos , Hormônio Liberador da Corticotropina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Masculino , Ansiedade/tratamento farmacológico , Estresse Psicológico/psicologia , Camundongos Endogâmicos C57BL , Ansiolíticos/farmacologia , Modelos Animais de Doenças
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G622-G630, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375576

RESUMO

Biopsychosocial factors are associated with disorders of gut-brain interaction (DGBI) and exacerbate gastrointestinal symptoms. The mechanisms underlying pathophysiological alterations of stress remain unclear. Corticotropin-releasing hormone (CRH) is a central regulator of the hormonal stress response and has diverse impact on different organ systems. The aim of the present study was to investigate the effects of peripheral CRH infusion on meal-related gastrointestinal symptoms, gastric electrical activity, and gastric sensorimotor function in healthy volunteers (HVs). In a randomized, double-blinded, placebo-controlled, crossover study, we evaluated the effects of CRH on gastric motility and sensitivity. HVs were randomized to receive either peripheral-administered CRH (100 µg bolus + 1 µg/kg/h) or placebo (saline), followed by at least a 7-day washout period and assignment to the opposite treatment. Tests encompassed saliva samples, gastric-emptying (GE) testing, body surface gastric mapping (BSGM, Gastric Alimetry; Alimetry) to assess gastric myoelectrical activity with real-time symptom profiling, and a gastric barostat study to assess gastric sensitivity to distention and accommodation. Twenty HVs [13 women, mean age 29.2 ± 5.3 yr, body mass index (BMI) 23.3 ± 3.8 kg/m2] completed GE tests, of which 18 also underwent BSGM measurements during the GE tests. The GE half-time decreased significantly after CRH exposure (65.2 ± 17.4 vs. 78.8 ± 24.5 min, P = 0.02) with significantly increased gastric amplitude [49.7 (34.7-55.6) vs. 31.7 (25.7-51.0) µV, P < 0.01], saliva cortisol levels, and postprandial symptom severity. Eleven HVs also underwent gastric barostat studies on a separate day. However, the thresholds for discomfort during isobaric distensions, gastric compliance, and accommodation did not differ between CRH and placebo.NEW & NOTEWORTHY In healthy volunteers, peripheral corticotropin-releasing hormone (CRH) infusion accelerates gastric-emptying rate and increases postprandial gastric response, accompanied by a rise in symptoms, but does not alter gastric sensitivity or meal-induced accommodation. These findings underscore a significant link between stress and dyspeptic symptoms, with CRH playing a pivotal role in mediating these effects.


Assuntos
Hormônio Liberador da Corticotropina , Estudos Cross-Over , Esvaziamento Gástrico , Voluntários Saudáveis , Estômago , Humanos , Feminino , Masculino , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/administração & dosagem , Hormônio Liberador da Corticotropina/farmacologia , Adulto , Método Duplo-Cego , Estômago/efeitos dos fármacos , Estômago/fisiologia , Esvaziamento Gástrico/efeitos dos fármacos , Adulto Jovem , Saliva/metabolismo
3.
Biomed Res Int ; 2024: 8322844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327803

RESUMO

Neuroimaging data in humans and neurobiological studies in rodents have suggested an involvement of the insular cortex (IC) in anxiety manifestations. However, the local neurochemical mechanisms involved are still poorly understood. Corticotropin-releasing factor (CRF) neurotransmission has been described as a prominent neurochemical mechanism involved in the expression of anxiety-like behaviors, but the brain sites related are poorly understood. Additionally, several findings indicate that control of physiological and behavioral responses by the IC occurs in a site-specific manner along its rostrocaudal axis. Thus, this study is aimed at evaluating the effect of CRF receptor agonism and antagonism within the anterior and posterior subregions of the IC in controlling anxiety-related behaviors in the elevated plus maze (EPM). For this, independent groups (six groups) of animals received bilateral microinjections of vehicle, the selective CRF1 receptor antagonist CP376395, or CRF into either the anterior or posterior subregions of the IC. Ten minutes later, the behavior in the EPM was evaluated for five minutes. Treatment of the anterior IC with CP376395, but not with CRF, increased the time and number of entries into the open arms of the EPM. CRF, but not the CRF1 receptor antagonist, microinjected into the posterior IC also increased exploration of the EPM open arms. Taken together, these data indicate that CRFergic neurotransmission in the anterior IC is involved in the expression of anxiety-related behaviors in the EPM. This neurochemical mechanism does not seem to be activated within the posterior IC during exposure to the EPM, but the effects caused by CRF microinjection indicate that activation of CRF receptors in this IC subregion might evoke anxiolytic-like effects.


Assuntos
Aminopiridinas , Ansiolíticos , Receptores de Hormônio Liberador da Corticotropina , Humanos , Ratos , Animais , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Teste de Labirinto em Cruz Elevado , Córtex Insular , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiolíticos/farmacologia
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338760

RESUMO

Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3ß4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.


Assuntos
Receptores Nicotínicos , Tabagismo , Humanos , Nicotina/uso terapêutico , Tabagismo/tratamento farmacológico , Recompensa , Hormônio Liberador da Corticotropina/farmacologia , Recidiva
5.
Pflugers Arch ; 476(3): 351-364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228895

RESUMO

Despite the importance of physiological responses to stress in a short-term, chronically these adjustments may be harmful and lead to diseases, including cardiovascular diseases. The lateral hypothalamus (LH) has been reported to be involved in expression of physiological and behavioral responses to stress, but the local neurochemical mechanisms involved are not completely described. The corticotropin-releasing factor (CRF) neurotransmission is a prominent brain neurochemical system implicated in the physiological and behavioral changes induced by aversive threats. Furthermore, chronic exposure to aversive situations affects the CRF neurotransmission in brain regions involved in stress responses. Therefore, in this study, we evaluated the influence of CRF neurotransmission in the LH on changes in cardiovascular function and baroreflex activity induced by chronic variable stress (CVS). We identified that CVS enhanced baseline arterial pressure and impaired baroreflex function, which were followed by increased expression of CRF2, but not CRF1, receptor expression within the LH. Local microinjection of either CRF1 or CRF2 receptor antagonist within the LH inhibited the baroreflex impairment caused by CVS, but without affecting the mild hypertension. Taken together, the findings documented in this study suggest that LH CRF neurotransmission participates in the baroreflex impairment related to chronic stress exposure.


Assuntos
Hormônio Liberador da Corticotropina , Região Hipotalâmica Lateral , Ratos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Região Hipotalâmica Lateral/metabolismo , Barorreflexo , Encéfalo/metabolismo , Transmissão Sináptica
6.
Neuropsychopharmacology ; 49(2): 443-454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833589

RESUMO

Trauma and chronic stress exposure are the strongest predictors of lifetime neuropsychiatric disease presentation. These disorders often have significant sex biases, with females having higher incidences of affective disorders such as major depression, anxiety, and PTSD. Understanding the mechanisms by which stress exposure heightens disease vulnerability is essential for developing novel interventions. Current rodent stress models consist of a battery of sensory, homeostatic, and psychological stressors that are ultimately integrated by corticotropin-releasing factor (CRF) neurons to trigger corticosteroid release. These stress paradigms, however, often differ between research groups in the type, timing, and duration of stressors utilized. These inconsistencies, along with the variability of individual animals' perception and response to each stressor, present challenges for reproducibility and translational relevance. Here, we hypothesized that a more direct approach using chemogenetic activation of CRF neurons would recapitulate the effects of traditional stress paradigms and provide a high-throughput method for examining stress-relevant phenotypes. Using a transgenic approach to express the Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor hM3Dq in CRF-neurons, we found that the DREADD ligand clozapine-N-oxide (CNO) produced an acute and robust activation of the hypothalamic-pituitary-adrenal (HPA) axis, as predicted. Interestingly, chronic treatment with this method of direct CRF activation uncovered a novel sex-specific dissociation of glucocorticoid levels with stress-related outcomes. Despite hM3Dq-expressing females producing greater corticosterone levels in response to CNO than males, hM3Dq-expressing males showed significant typical physiological stress sensitivity with reductions in body and thymus weights. hM3Dq-expressing females while resistant to the physiological effects of chronic CRF activation, showed significant increases in baseline and fear-conditioned freezing behaviors. These data establish a novel mouse model for interrogating stress-relevant phenotypes and highlight sex-specific stress circuitry distinct for physiological and limbic control that may underlie disease risk.


Assuntos
Hormônio Liberador da Corticotropina , Neurônios , Camundongos , Masculino , Animais , Feminino , Hormônio Liberador da Corticotropina/farmacologia , Reprodutibilidade dos Testes , Ansiedade , Medo
7.
Curr Neuropharmacol ; 22(5): 904-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37581323

RESUMO

Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Depressão , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador da Corticotropina/uso terapêutico
8.
An Acad Bras Cienc ; 95(4): e20200221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088701

RESUMO

CRH neurons are found in the paraventricular nucleus(PVN) and central amygdala(CeA) nuclei. This study investigated the effects of sub-chronic CRH administration into the PVN and CeA nuclei on food intake biomarkers in rats divided into five groups: control, two shams, and two CRH-PVN and CRH-CeA groups(receiving CRH in nuclei for seven days). The CRH-PVN group had significantly higher cumulative food intake and food intake trends than the CRH-CeA group. The CRH-CeA and CRH-PVN groups exhibited significant increases in food intake during hours 1 and 2, respectively. Moreover, to be time-dependent, food intake is modulated by different brain nuclei. The CRH signaling pathway appeared to be activated later in the PVN than CeA. Both groups exhibited significantly higher leptin levels, the CRH-PVN group exhibited higher ghrelin levels and lower glucose levels. Repetitive administration of CRH into the PVN and CeA significantly reduced body weight differences. CRH administration into the PVN affected both leptin and ghrelin levels, but ghrelin had a greater impact on glucose variations and cumulative food intake than leptin. Finally, CRH administration into the PVN and CeA likely activated the HPA axis, and the CeA had a greater impact on the stress circuit than on food intake behavior.


Assuntos
Núcleo Central da Amígdala , Hormônio Liberador da Corticotropina , Ratos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Núcleo Central da Amígdala/metabolismo , Leptina/metabolismo , Grelina , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ingestão de Alimentos/fisiologia , Glucose
9.
Neurogastroenterol Motil ; 35(11): e14677, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736684

RESUMO

BACKGROUND: Intestinal barrier dysfunction is a prevalent pathogenic factor underlying various disorders. Currently there is no effective resolution. Previous studies have reported the potential anti-inflammatory properties of lidocaine and its ability to alleviate visceral hypersensitivity in individuals with irritable bowel syndrome (IBS). Therefore, our study will further verify the effect of lidocaine on intestinal barrier dysfunction in IBS and investigate the underlying mechanisms. METHODS: In this study, we investigated the role of lidocaine by assessing visceral hypersensitivity, body weight, inflammatory factors, fluorescein isothiocyanate-dextran 4000 (FD4) flux, tight junctions (TJs) and spleen and thymus index in rats subjected to water avoidance stress (WAS) to mimic intestinal barrier dysfunction in IBS with and without lidocaine. In vitro, we investigated the role of corticotropin-releasing hormone receptor 2 (CRHR2) in lidocaine-treated Caco2 cells using small interfering RNA (siRNA) targeting CRHR2. KEY RESULTS: In WAS rats, lidocaine significantly restored weight loss, damaged TJs, spleen index and thymus index and inhibited abdominal hypersensitivity as well as blood levels of markers indicating intestinal permeability, such as diamine oxidase (DAO), D-lactic acid (D-Lac) and lipopolysaccharide (LPS). Consequently, the leakage of FD4 flux from intestine was significantly attenuated in lidocaine group, and levels of intestinal inflammatory factors (IL-1ß, IFN-γ, TNF-α) were reduced. Interestingly, lidocaine significantly suppressed corticotropin-releasing hormone (CRH) levels in lamina propria cells, while the CRH receptor CRHR2 was upregulated in intestinal epithelial cells. In vitro, lidocaine enhanced the expression of CRHR2 on Caco-2 intestinal epithelial cells and restored disrupted TJs and the epithelial barrier caused by LPS. Conversely, these effects were diminished by a CRHR2 antagonist and siRNA-CRHR2, suggesting that the protective effect of lidocaine depends on CRHR2. CONCLUSIONS AND INFERENCES: Lidocaine ameliorates intestinal barrier dysfunction in IBS by potentially modulating the expression of CRHR2 on intestinal epithelial cells.


Assuntos
Síndrome do Intestino Irritável , Humanos , Ratos , Animais , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Células CACO-2 , Lidocaína/farmacologia , Lidocaína/uso terapêutico , Lipopolissacarídeos , RNA Interferente Pequeno
10.
J Ovarian Res ; 16(1): 155, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543650

RESUMO

BACKGROUND: Women with polycystic ovarian syndrome (PCOS) have increased hypothalamic-pituitary-adrenal (HPA) axis activation, pro-inflammatory mediators, and psychological distress in response to stressors. In women with PCOS, the corticotropin-releasing hormone (CRH) induces an exaggerated HPA response, possibly mediated by one of the CRH receptors (CRHR1 or CRHR2). Both CRHR1 and CRHR2 are implicated in insulin secretion, and variants in CRHR1 and CRHR2 genes may predispose to the mental-metabolic risk for PCOS. METHODS: We phenotyped 212 Italian families with type 2 diabetes (T2D) for PCOS following the Rotterdam diagnostic criteria. We analyzed within CRHR1 and CRHR2 genes, respectively, 36 and 18 microarray-variants for parametric linkage to and/or linkage disequilibrium (LD) with PCOS under the recessive with complete penetrance (R1) and dominant with complete penetrance (D1) models. Subsequentially, we ran a secondary analysis under the models dominant with incomplete penetrance (D2) and recessive with incomplete penetrance (R2). RESULTS: We detected 22 variants in CRHR1 and 1 variant in CRHR2 significantly (p < 0.05) linked to or in LD with PCOS across different inheritance models. CONCLUSIONS: This is the first study to report CRHR1 and CRHR2 as novel risk genes in PCOS. In silico analysis predicted that the detected CRHR1 and CRHR2 risk variants promote negative chromatin activation of their related genes in the ovaries, potentially affecting the female cycle and ovulation. However, CRHR1- and CRHR2-risk variants might also lead to hypercortisolism and confer mental-metabolic pleiotropic effects. Functional studies are needed to confirm the pathogenicity of genes and related variants.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Feminino , Humanos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Síndrome do Ovário Policístico/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo
11.
J Clin Endocrinol Metab ; 109(1): e182-e189, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531629

RESUMO

CONTEXT: Determining the etiology of adrenocorticotropin (ACTH)-dependent Cushing's syndrome (CS) is often difficult. The gold standard test, inferior petrosal sinus sampling (IPSS), is expensive and not widely available. OBJECTIVE: Evaluate the performance of the corticotropin-releasing hormone stimulation test (CRH-ST) and the 8 mg high-dose dexamethasone suppression test (HDDST) in distinguishing Cushing's disease (CD) from ectopic ACTH syndrome (EAS). METHODS: Retrospective review in a tertiary referral center. A total of 323 patients with CD or EAS (n = 78) confirmed by pathology or biochemical cure (n = 15) in 96% underwent CRH-ST and HDDST performed between 1986 and 2019. We calculated test sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value, and diagnostic accuracy (DA) for the diagnosis of CD, and determined optimal response criteria for each test, alone and in combination. RESULTS: The CRH-ST performed better than the HDDST (DA 91%, 95% CI 87-94% vs 75%, 95% CI 69-79%). Optimal response criteria were a ≥40% increase of ACTH and/or cortisol during the CRH test and a ≥69% suppression of cortisol during the HDDST. A ≥40% cortisol increase during the CRH test was the most specific measure, PPV 99%. Seventy-four percent of subjects had concordant positive CRH test and HDDST results, yielding Se 93%, Sp 98%, DA 95%, and PPV 99%, with a pretest likelihood of 85%. A proposed algorithm diagnosed 64% of patients with CD with near perfect accuracy (99%), obviating the need for IPSS. CONCLUSION: CRH is a valuable tool to correctly diagnose the etiology of ACTH-dependent CS. Its current worldwide unavailability impedes optimal management of these patients.


Assuntos
Síndrome de ACTH Ectópico , Síndrome de Cushing , Hipersecreção Hipofisária de ACTH , Humanos , Animais , Ovinos , Síndrome de Cushing/diagnóstico , Síndrome de Cushing/etiologia , Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina/farmacologia , Hidrocortisona , Diagnóstico Diferencial , Síndrome de ACTH Ectópico/diagnóstico , Hipersecreção Hipofisária de ACTH/diagnóstico , Hipersecreção Hipofisária de ACTH/complicações , Dexametasona/farmacologia
12.
Sheng Li Xue Bao ; 75(4): 487-496, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37583035

RESUMO

It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Ratos Endogâmicos SHR , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Ratos Endogâmicos WKY , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/fisiologia , Sistema Nervoso Simpático
13.
J Pharmacol Sci ; 153(1): 26-30, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524451

RESUMO

Visceral hypersensitivity and leaky gut, which are mediated via corticotropin-releasing factor (CRF) and Toll-like receptor 4 are key pathophysiology of irritable bowel syndrome (IBS). Metformin was reported to improve these gastrointestinal (GI) changes. In this study, we attempted to determine the effects of imeglimin, which was synthesized from metformin on GI function in IBS rat models. Imeglimin blocked lipopolysaccharide- or CRF-induced visceral hypersensitivity and colonic hyperpermeability. These effects were prevented by compound C or naloxone. These results suggest that imeglimin may be effective for the treatment of IBS by improved visceral sensation and colonic barrier via AMPK and opioid receptor.


Assuntos
Síndrome do Intestino Irritável , Metformina , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Hormônio Liberador da Corticotropina/farmacologia , Colo , Metformina/farmacologia
14.
J Vet Intern Med ; 37(5): 1881-1888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432047

RESUMO

BACKGROUND: Bacterial sepsis is the leading cause of death in foals and is associated with hypothalamic-pituitary-adrenocortical axis (HPAA) dysfunction. HPAA function can be evaluated by an arginine-vasopressin (AVP) stimulation test. HYPOTHESES/OBJECTIVES: Administration of AVP will stimulate a dose-dependent rise in systemic adrenocorticotropin-releasing hormone (ACTH) and cortisol in neonatal foals. There will be no response seen in corticotropin-releasing hormone (CRH) and baseline AVP will be within reference interval. ANIMALS: Twelve neonatal foals, <72 hours old. METHODS: HPAA function was assessed in foals utilizing 3 doses of AVP (2.5, 5, and 7.5 IU), administered between 24 and 48 hours of age in this randomized cross-over study. Cortisol, ACTH, CRH and AVP were measured at 0 (baseline), 15, 30, 60 and 90 minutes after AVP administration with immunoassays. The fold increase in cortisol and ACTH was calculated at 15 and 30 minutes compared to baseline. RESULTS: All doses of AVP resulted in a significant increase in cortisol concentration over time, and a dose-dependent increase in ACTH concentration over time. ACTH and cortisol were significantly increased at 15 and 30 minutes, respectively after all 3 doses of AVP compared to baseline (P < .01). There was no change in endogenous CRH after stimulation with AVP. CONCLUSION AND CLINICAL IMPORTANCE: Administration of AVP is safe and results in a significant rise in ACTH and cortisol in neonatal foals. A stimulation test with AVP (5 IU) can be considered for HPAA assessment in septic foals.


Assuntos
Hormônio Adrenocorticotrópico , Hidrocortisona , Animais , Cavalos , Hormônio Adrenocorticotrópico/farmacologia , Arginina Vasopressina/farmacologia , Hormônio Liberador da Corticotropina/farmacologia , Vasopressinas
15.
Chin J Physiol ; 66(2): 65-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082994

RESUMO

Prenatal opioid exposure may impede the development of adaptive responses to environmental stimuli by altering the stress-sensitive brain circuitry located at the paraventricular nucleus of the hypothalamus (PVH) and locus coeruleus (LC). Corticotropin-releasing factor (CRF) released from neurons in the PVH has emerged as a key molecule to initiate and integrate the stress response. Methadone (Meth) and buprenorphine (Bu) are two major types of synthetic opioid agonists for first-line medication-assisted treatment of opioid (e.g., morphine, Mor) use disorder in pregnant women. No studies have compared the detrimental effects of prenatal exposure to Meth versus Bu on the stress response of their offspring upon reaching adulthood. In this study, we aimed to compare stress-related neuronal activation in the PVH and LC induced by restraint (RST) stress in adult male rat offspring with prenatal exposure to the vehicle (Veh), Bu, Meth, or Mor. CFos-immunoreactive cells were used as an indicator for neuronal activation. We found that RST induced less neuronal activation in the Meth or Mor exposure groups compared with that in the Bu or Veh groups; no significant difference was detected between the Bu and Veh exposure groups. RST-induced neuronal activation was completely prevented by central administration of a CRF receptor antagonist (α-helical CRF9-41, 10 µg/3 µL) in all exposure groups, suggesting the crucial role of CRF in this stress response. In offspring without RST, central administration of CRF (0.5 µg/3 µL)-induced neuronal activation in the PVH and LC. CRF-induced neuronal activation was lessened in the Meth or Mor exposure groups compared with that in the Bu or Veh groups; no significant difference was detected between the Bu and Veh exposure groups. Moreover, RST- or CRF-induced neuronal activation in the Meth exposure group was comparable with that in the Mor exposure group. Further immunohistochemical analysis revealed that the Meth and Mor exposure groups displayed less CRF neurons in the PVH of offspring with or without RST compared with the Bu or Veh groups. Thus, stress-induced neuronal activation in the PVH and LC was well preserved in adult male rat offspring with prenatal exposure to Bu, but it was substantially lessened in those with prenatal exposure to Meth or Mor. Lowered neuronal activation found in the Meth or Mor exposure groups may be, at least in part, due to the reduction in the density of CRF neurons in the PVH.


Assuntos
Buprenorfina , Efeitos Tardios da Exposição Pré-Natal , Ratos , Masculino , Feminino , Gravidez , Humanos , Animais , Morfina/farmacologia , Metadona/farmacologia , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Buprenorfina/farmacologia , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Neurônios
16.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108207

RESUMO

Glycine max Merr. (GM) is a functional food that provides many beneficial phytochemicals. However, scientific evidence of its antidepressive and sedative activities is scarce. The present study was designed to investigate the antidepressive and calmative effects of GM and its biologically active compound, genistein (GE), using electroencephalography (EEG) analysis in an electric foot shock (EFS)-stressed rat. The underlying neural mechanisms of their beneficial effects were determined by assessing corticotropin-releasing factor (CRF), serotonin (5-HT), and c-Fos immunoreactivity in the brain using immunohistochemical methods. In addition, the 5-HT2C receptor binding assay was performed because it is considered a major target of antidepressants and sleep aids. In the binding assay, GM displayed binding affinity to the 5-HT2C receptor (IC50 value of 14.25 ± 11.02 µg/mL). GE exhibited concentration-dependent binding affinity, resulting in the binding of GE to the 5-HT2C receptor (IC50, 77.28 ± 26.57 mg/mL). Administration of GM (400 mg/kg) increased non-rapid eye movement (NREM) sleep time. Administration of GE (30 mg/kg) decreased wake time and increased rapid eye movement (REM) and NREM sleep in EPS-stressed rats. In addition, treatment with GM and GE significantly decreased c-Fos and CRF expression in the paraventricular nucleus (PVN) and increased 5-HT levels in the dorsal raphe in the brain. Overall, these results suggest that GM and GE have antidepressant-like effects and are effective in sleep maintenance. These results will benefit researchers in developing alternatives to decrease depression and prevent sleep disorders.


Assuntos
Hormônio Liberador da Corticotropina , Transtornos do Sono-Vigília , Ratos , Animais , Hormônio Liberador da Corticotropina/farmacologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Glycine max/metabolismo , Serotonina/metabolismo , Receptor 5-HT2C de Serotonina , Sono , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Eletroencefalografia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/etiologia
17.
FEBS Open Bio ; 13(5): 818-832, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971048

RESUMO

Corticotropin-releasing factor (CRF) stimulates adrenocorticotropic hormone (ACTH) secretion from the pituitary gland and is an essential regulator of the hypothalamic-pituitary-adrenocortical axis. Isoforms of CRF receptor are known to mediate the effects of urocortin stress ligands on the regulation of stress responses, anxiety, and feeding behavior; however, urocortin stress ligands also influence cell proliferation. In view of the tumor-promoting capacity of prolonged stress, here we investigated (a) the effect of urocortin on cell proliferative signaling via extracellular signal-regulated kinase 1/2, (b) the expression and cellular distribution of the specific CRF receptor isoforms, and (c) the intracellular localization of phosphorylated ERK1/2 in HeLa cells. Stimulation of cell proliferation was observed in the presence of 10 nm urocortin. Our data also suggest that MAP kinase MEK, the transcription factors E2F-1 and p53, and PKB/Akt are involved in this process. These findings may have therapeutic relevance for the targeted treatment of various malignancies.


Assuntos
Receptores de Hormônio Liberador da Corticotropina , Urocortinas , Humanos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/farmacologia , Urocortinas/metabolismo , Sistema de Sinalização das MAP Quinases , Células HeLa , Ligantes , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia
18.
Br J Anaesth ; 130(4): 446-458, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737387

RESUMO

BACKGROUND: Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS: With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS: PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS: CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.


Assuntos
Anestesia , Isoflurano , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Isoflurano/farmacologia , Hipotálamo/metabolismo
19.
J Exp Biol ; 226(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805713

RESUMO

Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and the secretion of adrenal stress hormones. Previous work has demonstrated that stress hormone secretion can be regulated by circulating levels of estradiol. However, the effect of estradiol on CRH neuron excitability is less clear. Here, we show that chronic estradiol replacement following ovariectomy increases two types of potassium channel currents in CRH neurons: fast inactivating voltage-gated A-type K+ channel currents (IA) and non-inactivating M-type K+ channel currents (IM). Despite the increase in K+ currents following estradiol replacement, there was no overall change in CRH neuron spiking excitability assessed with either frequency-current curves or current ramps. Together, these data reveal a complex picture whereby ovariectomy and estradiol replacement differentially modulate distinct aspects of CRH neuron and HPA axis function.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Feminino , Humanos , Hormônio Liberador da Corticotropina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Estradiol/farmacologia , Estradiol/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Neurônios/fisiologia
20.
J Vet Intern Med ; 37(1): 292-301, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36651191

RESUMO

BACKGROUND: The hypothalamic-pituitary-adrenocortical axis (HPAA) response to sepsis can be impaired in critical illness. Corticotropin-releasing hormone (CRH) stimulation test might assess HPAA function in foals. OBJECTIVE: To evaluate plasma cortisol, ACTH, arginine vasopressin (AVP), and endogenous CRH (eCRH) response to different doses of ovine CRH (oCRH). ANIMALS: Healthy (n = 14) and hospitalized (n = 15) foals <7 days of age. METHODS: In this prospective randomized study, oCRH (0.1, 0.3, and 1 µg/kg) was administered intravenously and blood samples were collected before, 15, 30, 60, and 90 minutes after administration of oCRH to determine plasma hormone concentrations. The hormonal response was evaluated as the difference (Delta; µg/dL or pg/mL) or percent change between baseline hormone concentration and each time point after oCRH stimulation. RESULTS: Cortisol concentrations increased from baseline at 15 minutes with 0.1 and 0.3 µg/kg and at 30 and 60 minutes from baseline with 1 µg/kg oCRH (P < .05) in healthy and hospitalized foals. ACTH concentrations increased from baseline at 15 minutes with 0.1 µg/kg and at 30 minutes with 1 µg/kg oCRH (P < .05) in hospitalized foals. Delta cortisol 0 - 30, ACTH 0 - 30, and eCRH 0 - 30 was higher for the 1 µg/kg compared with 0.1 µg/kg oCRH in healthy foals (P < .05). Delta ACTH 0 - 15 and eCRH 0 - 30 was higher for the 1 µg/kg compared with the lower doses of oCRH in hospitalized foals (P < .05). CONCLUSIONS AND CLINICAL IMPORTANCE: Cortisol, ACTH, and eCRH concentrations increased in response to administration of all doses of oCRH. One microgram per kilogram of oCRH appears to be optimal for the assessment of HPAA in healthy and hospitalized foals.


Assuntos
Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina , Animais , Ovinos , Cavalos , Hormônio Liberador da Corticotropina/farmacologia , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Estudos Prospectivos , Sistema Hipófise-Suprarrenal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA